
1

Make Complexity Compelling

EXECUTIVE TECHNOLOGY BRIEF

Serverless Architecture:
Increasing Business Competitive-
ness and Developer Productivity
with FaaS Infrastructure

Serverless computing is a method whose time has arrived.
Increasingly adopted by software-development organiza-
tions moving away from traditional hosted models to
cloud-based, virtualized environments, this new architec-
tural and development framework provides several meth-
ods that allow developers to build full application stacks
without the need to manage servers, speeding new-feature
development while reducing infrastructure costs.

Serverless application development takes advantage of the
low-cost and high-scale attributes of the public cloud and
its pay-as-you-go model. Indeed, serverless development
is one of Gartner Group’s Top 10 Trends Impacting Infra-
structure and Operations for 2019.

This executive technology brief provides an overview of
the pros and cons of a serverless software development
framework. It focuses on the utility of an cloud architec-
ture models that creates infrastructure on the fly, with a
enphasis on AWS Lambda and how it can make software
development teams more effective.

What is Serverless Architecture?
Serverless architecture, also known as serverless comput-
ing or function as a service (FaaS), is a software design pat-
tern wherein applications are hosted by a third-party
service, eliminating the need for server software and hard-
ware management by developers. Applications are broken
up into individual functions representing business logic
that can be invoked and scaled individually.

For a platform to be considered truly serverless, it should
provide the following capabilities:

 No infrastructure provisioning or management neces-
sary on the developer side.

 Application-centric, with development focused on man-
aging APIs and SLAs rather than physical infrastructure.

 Built to run in stateless compute containers that are
event-triggered, ephemeral (may only last for a single
invocation), and fully managed by a third party.

 Flexible scaling, where applications scale capacity auto-
matically through toggling units of consumption rather
than allocating server units—cost is calculated based on
what runs rather than servers allocated.

The following terms are relevant to the discussion:

Platform as a Service (PaaS). PaaS is about the out-
sourced purchase of an entire application server. PaaS
brings most of the drawbacks of a hosted server farm—

https://martinfowler.com/articles/serverless.html
https://www.gartner.com/en/newsroom/press-releases/2018-12-04-gartner-identifies-the-top-10-trends-impacting-infras
https://www.gartner.com/en/newsroom/press-releases/2018-12-04-gartner-identifies-the-top-10-trends-impacting-infras

2

lack of ability to bring down pieces of the application in
response to an event, needs to consider scaling in terms of
allocation—while also bringing new drawbacks unique to
serverless implementations.

Infrastructure as a Service (IaaS). IaaS is a step even
closer to a traditional implementation: it’s simply the pur-
chase of remote infrastructure, virtual machines, and other
resources, replicating a traditional server farm on servers
whose uptime is ultimately in another company’s control.

Function as a Service (FaaS). FaaS is about running back-
end code without managing your own server systems or your
own long-lived server applications. In a FaaS environment, all
developers do is deploy code; the cloud provider does every-
thing else necessary for provisioning resources, instantiating
VMs, and managing processes. No cluster or VM manage-
ment is required by the user.

Why Go Serverless?
In traditional, hosted server solutions, a significant portion of
development time must necessarily be dedicated to the pro-
visioning and management of physical server infrastructure.
This pushes developers to focus not only on business applica-
tion, but lower-level, largely invisible structural tasks that
provide no benefit to the end user.

A serverless infrastructure, by nature increases the potential
for innovation: developers can focus most of their efforts on
visible application work and business-related features. In
brief, serverless architecture outsources those parts of imple-
mentation that are not core to delivering business value.

In addition, this sort of turnkey setup drastically reduces lead
time for testing new ideas and new innovations. A focus on
calling individual functions means that pieces of the applica-
tion can be tested, implemented, and pushed to market
quickly without the need for overarching development to tie
these pieces together. This kind of development focus can be
described as prioritizing choreography over orchestration.
Each coded component plays a more architecturally aware
role than in traditionally hosted services—an idea also more
common in a microservices approach.

The ultimate decision is therefore what is most important for
the needs of the business. There are now many alternatives to
on-premises data centers, leaving leaders with a question
that brings the decision to focus: are there strategic needs for
on-premises servers, or would the business be better served
buying rather than building, and taking on the significant
investment involved with building a data center?

FaaS also meets ten of the twelve steps in the Twelve-Factor
App development method by default—it automatically han-
dles horizontal scaling and security—which builds in porta-
bility and resiliency from the front end. This makes it easier
to separate data from individual functions, which can then
be used to code future functions that serve new products.

Benefits of a Serverless Implementation
Serverless implementation can:

 Reduce costs, complexity, and engineering lead
time. Because you only pay for the compute you need,
there is great support in a serverless system for a granular
breakdown of components—a microservices-style
approach that can be cost-prohibitive in a more traditional
hosting solution. Such cost benefits mean that there are
very small operational costs for experimenting with new
features; compute times measured in minutes do not make
a significant impact on monthly fees.

 Provide scale-to-zero pricing. In a FaaS implementation,
scaling is automatically managed, transparent, and fine-
grained. This differs from container hosting services like
Docker and ultimately saves money, as payment in AWS is
determined by resources used, with no need to allocate in
advance. Serverless architecture, in this way, can be said to
scale to zero—if you use zero resources, you pay nothing.

 Outsource architecture-level development. This
embrace of division of labor results in dramatically reduced
costs. The simple reality of shared infrastructure is one ele-
ment of these savings; the second comes in strong labor-
cost gains associated with what would have been in-house
infrastructure deployment and long-term maintenance.

 Minimize lock-in costs. One of the biggest fears in out-
sourcing infrastructure is an increased reliance on your
service provider: if terms change, it is often thought it
could be difficult or sometimes impossible to switch hosts
without a total rewrite of all applications. This is not neces-
sarily the case, however. Because FaaS is operation-ori-
ented, an AWS-centric implementation can be built in such
a way as to minimize this sort of lock-in. Lambdas are the
dominant form of serverless functions, and a good archi-
tecture pattern—such as ensuring you choose a cross-plat-
form programming language like NodeJS, Python, or Go—
will make any future migrations easier.

Drawbacks of a Serverless Implementation
Drawbacks include:

 Lack of vendor control. With any outsourcing strategy,
you are giving some control over server functionality.

https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://redmonk.com/rstephens/2018/12/14/serverless-more-than-just-functions/
https://redmonk.com/rstephens/2018/12/14/serverless-more-than-just-functions/
https://specify.io/concepts/microservices
https://www.gartner.com/en/newsroom/press-releases/2018-12-04-gartner-identifies-the-top-10-trends-impacting-infras
https://12factor.net/
https://12factor.net/
https://redmonk.com/rstephens/2018/12/14/serverless-more-than-just-functions/
https://read.acloud.guru/the-serverless-spectrum-147b02cb2292
https://read.acloud.guru/the-serverless-spectrum-147b02cb2292
https://www.thoughtworks.com/insights/blog/mitigating-serverless-lock-fears
https://martinfowler.com/articles/serverless.html#drawbacks

3

While AWS features reliable uptime, with any service there
is the potential for downtime, and recovery is entirely reli-
ant on the vendor. In addition, security services are entirely
dependent on AWS.

 No in-server state. FaaS functions have significant
restrictions when it comes to local state. You cannot
assume that state from one invocation of a function will be
available to another invocation of the same function. There
is no control over when host containers for functions start
and stop. As such, any data that needs to persist must be
stored in a stateful backing service, typically in services
such as a NoSQL database, out-of-process cache, or an
external object/file store. These are slower than in-mem-
ory or on-machine persistence.

 Difficulties in debugging. All debugging must be handled
by running FaaS functions locally. Lambda currently offers
no support for debugging functions running in a produc-
tion environment—nor for debugging functions that trig-
ger on production events.

 Invocation limitations. At present, the “timeout” for an
AWS Lambda function to respond to an event is at most
five minutes before being terminated. Other serverless
FaaS implementations have similar limitations.

Implementation in AWS Lambda
AWS Lambda, first introduced in 2014, is the most mature
offering in the serverless space. It presents significant advan-
tages to increase the speed of development time, reduce
costs, and unify business value with technology.

Lambdas are the dominant form of serverless functions,
blobs of code that AWS will run for you in a virtualized envi-
ronment without having to do any configuration.

As FaaS implementation doesn’t rely on an underlying appli-
cation, to make use of Lambdas you write code in one of sev-
eral languages and deploy it to the cloud with your Lambda
requests designed in. AWS starts your code in a virtualized
environment, complete with whatever software packages you
required.

Lambdas are like containers—you don’t manage storage or
the file system directly, that’s all set up by initial configura-
tion. However, unlike a container, you also don’t directly
manage Lambda startup, responses, or routing directly; you
leave all of that to AWS.

This offers a lot of flexibility; you can set up your code to
automatically trigger from other AWS services, or call it
directly from any web or mobile app. AWS offerings can also

be implemented “first class” in JavaScript, Python, Go, any
JVM language, or any .NET language

There are some design challenges unique to a serverless
approach. As noted, in any outsourced implementation
there’s no local control over response to downtime. Thus, the
best practice for reliable implementation is to make your
code truly serverless: pieces of your app must be spread
across AWS availability zones, minimizing the possibility that
more than a few individual functions of your overall applica-
tion can be unresponsive at any given time.

AWS Lambda v. Other Cloud FaaS Providers
Across the board, the theme is the same: AWS simply has the
most mature offering on the market. Microsoft and Google
are both playing catch-up to features that AWS has had inte-
grated and connected for years. That maturity leaves AWS in
a position of spending its next five years adding new features,
whereas the others will have to spend at least a portion of
that time simply seeking parity.

Based on a private analysis given by a consulting firm that
works with the leading cloud providers, it appears that both
Microsoft and Google are shifting their serverless strategies.
AWS is so far ahead that its competitors are expected to
focus on providing unintegrated open-source building blocks
that can be tied together, as opposed to the integrated func-
tion approach that AWS has taken.

Another major difference between AWS and other cloud pro-
viders is that AWS has done a lot to integrate enterprise
authentication levels. You bring your own provider and they
can plug and play and bridge into their own permissions sys-
tems making it more possible for enterprise to use their own
public cloud services without losing operational control.
With others, the decision comes down to whether their
authentication systems are a fit; there is little flexibility on
importing a different system without heavy modifications.

Microsoft’s Azure Functions is tightly integrated with Visual
Studio, like its other developer-focused products. Given this
integration, Azure is widely regarded to be a “simpler” imple-
mentation in comparison to AWS Lambda, but that simplic-
ity also translates to a comparative lack of flexibility. AWS is
highly configurable, with a host of features that Azure simply
lacks.

Storage cost comparisons—and flexibility in options—also
breaks in favor of AWS. Both services make use of basic block
storage, but AWS’s pricing tiers are more elastic, with flat fees
of $.045 per GB for hard-disk drive or solid-state drive at $.10
per GB. Azure charges $.05 per GB for HDD, or a flat fee of
$19.71 for 128 GB per month on SDD. The price difference for

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf

4

HDD is already noticeable over many operations, but it’s
this comparative lack of flexibility in SDD storage that
really breaks in Amazon’s favor.

Indeed, AWS cost savings have been significant for one
company—and will be even more so with serverless opera-
tions. In one month, the company paid AWS $1,380 for ser-
vices. The team estimates that eliminating AWS services
that its serverless implementation would not require (EC2,
Tomcat, and Beanstalk) could cut that nearly in half.

AWS also features stronger DevOps support than Azure.
Azure’s offering, which is relatively young—launched in
September of 2018—is still far from feature-complete, and
focused on the Microsoft method of development.

Most critically, and perhaps least surprisingly, Azure also
lags AWS in terms of open-source support. While Azure
made some uncharacteristic early strides in this area—the
Kubernetes container orchestration system is open
source—AWS has that philosophy at its core. Its services
are largely built on open source (MySQL, Tomcat), and it
has contributed large amounts of code to projects in Xen,
Linux, Docker, Chromium, MXNet, etc.

Components of a Successful
Serverless Implementation
FaaS development is a radical departure from traditional
hosted development structures. While this offers major
opportunities in terms of potential innovations, it also
requires a different approach to team structure to maxi-
mize the potential benefits.

A well-balanced structure should include programmers to
write functions and manage their source code, cloud pro-
fessionals to assign and control the resources these func-

tions use, and operations and security to deploy these
stacks to the correct environments.

Critically, these teams have interlocking responsibilities;
siloing is actively counterproductive, as interaction and
coordination will be needed for releases, updates, and
emergencies.

Conclusion
Despite the drawbacks inherent to any outsourced
approach, serverless architecture’s reduced operational
and development costs, easier operational management,
and reduced feedback loop for creating new application
components represent significant advantages over a
hosted solution.

The shift to a pay-as-you-go model represents signifi-
cant—and immediate—short- and long-term savings.
Even beyond the advantages of only paying for used com-
pute cycles, the benefits of outsourcing the long-term
costs in development, maintenance, and replacement of
components in a traditional hosted server farm are poten-
tially enormous.

The most critical value-add, however, lies in the funda-
mentally different approach it supports for developers.
Bringing developer focus exclusively to the application
side brings business value and technology together: it is a
streamlining of the development model to focus exclu-
sively on adding business value to applications.

About Canright
Canright Communications, a Chicago B2B content marketing agency, creates alignment and builds connections
for marketing and sales results. The business and technology leaders at our clients work with the technologies
that are determining the shape of business, commerce, and finance. We help them market and sell their ideas,
innovations, products, and services through clear communications.

We translate tech-speak into persuasive copy that identifies key selling points and explains technologies
in a way that nontechnical executives and decision-makers can understand.

We make complexity compelling.

Content that Connects

Canright Communications
333 S. Wabash Ave., Suite 2700
Chicago, IL 60604
www.canrightcommunications.com
+1 773-426-7000

Schedule a consultation for an Executive Tech Brief
about your software solution. Contact Collin Canright
at collin@canrightcomunications.com.

https://www.theregister.co.uk/2017/03/30/doe_open_sourcey_ness_in_cloud_matter/
https://www.theregister.co.uk/2017/03/30/doe_open_sourcey_ness_in_cloud_matter/
https://canrightcommunications.com/

	What Is Serverless Architecture
	Why Go Serverless?
	AWS Lambda v. Other Cloud FaaS Providers
	Components of a SuccessfulServerless Implementation
	About Canright

